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Abstract.  The paper presents the theoretical and practical aspects of the design and constructions of 
a high-frequency full-bridge series-parallel load resonant converter for arc welding. The converter 
with maximum output current of 150A and an output no-load voltage of  70V operating at frequency 
from 65kHz to 100kHz is designed. Soft switching for all power switches is achieved by using the 
non-dissipative snubbers. This converter minimises the size and weight of the magnetic components 
in the converter, reduces output current ripple and switching losses in semiconductor devices.  
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1. INTRODUCTION 
 
In the recent years the power converters are often used in 
many arc welding applications. The size of magnetic 
components and capacitors depends on the operation 
frequency [1]. The high frequency operation of the 
converter minimises the size and weight of the converter and 
reduces output current ripples. In this paper a welding 
supply with high frequency inverter is described. The 
IGBTs are often utilised to achieve high frequency at high 
power applications. However, the high switching frequency 
results in increased switching losses in power semiconductor 
devices at turn-on and turn-off. 
The full bridge series-parallel (LCC) resonant converter 
with capacitive snubbers working above resonance 
frequency is used in the arc welding supply. The soft 
switching techniques is used in this converter. Zero-voltage 
switching for all power switches is ensured to reduce 
switching losses and achieve high efficiency in full load 
range and wide range of the output voltage. The optimal 
design of the resonant components LS, CS, CP is very 
important for correct operation of the welding supply. The 
major advantages of the mentioned converter are low 
switching losses, good adaptation to various operating 
conditions, fast response, high efficiency, and improved 
power factor [10]. 
 
 

2. POWER AND CONTROL CIRCUITS  
 
The simplified scheme of the LCC resonant converter as a  
power supply for arc welding is shown in Fig. 1. The 
converter consist of the input full bridge uncontrolled 
rectifier, input capacitive filter, full bridge IGBT inverter, 
series-parallel resonant components, high frequency high 
power coaxial transformer, center tapped high frequency 
rectifier with fast recovery diodes and output inductive 
filter. The resonant tank comprises three elements: series 
inductor LS, series capacitor CS and parallel capacitor CP. 

The capacitor CS with the inductance LS present a series 
resonant circuit. The capacitor CP is connected in parallel 
with the transformer primary winding and they represent 
parallel resonant circuit. The IGBT’s of the converter 
operate with variable switching frequency above resonance 
frequency in full operating range, hence the power switches 
are turned-on under zero voltage (ZVS). 
In order to reduce turn-off losses of the switches to 
acceptable level the external capacitors C1...C4 (acting as a 
non-dissipative snubbers) are required. The converter 
transistors are operated with reduced switching losses, hence 
the switching frequency can be higher as in conventional 
hard-switching converters. 
For welding process, the maximum arc voltage is about 35V 
and the voltage needed to a good arc ignition, at no-load, 
must be around 70V [4]. These conditions can be achieved 
using correct design of power circuits and  suitable control. 
The short circuit current and the maximum load voltage 
must be limited and controlled. 
In Shielded Metal Arc Welding (SMAW), which is the most 
popular welding process, the dc current must be controlled, 
The control scheme for the resonant converter is shown in 
Fig. 2. A microcomputer control or an integrated control 
circuit (e.g. UC 1861) can be utilised for the control of the 
converter. These circuits includes several functions needed 
to ensure correct welder behaviour in all operating 
conditions. 
The microcomputer control system consist of the 
microprocessor, timer, multiplexer, analog-digital converter, 
output logic circuit, dead time generator and comparators. 
This control circuit is more difficult as integrated control 
circuit but its facilities are larger.  
The resonant-mode power supply controller UC 1861 offers 
many features such as error amplifier, voltage controlled 
oscillator, one shot timing generator with zero crossing 
detection comparator, steering logic to two output drivers, a 
5V bias generator, and undervoltage lockout. A latched fault 
management scheme provides soft start, restart delay, and a 
precision reference. 
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Fig. 1. Full-bridge series-parallel resonant converter for arc welding 
 

The both resonant-mode control circuits are completely 
galvanically separated from the power circuits. 
The resonant inverter working above the resonance 
frequency requires controlled switch-off times to ensure 
zero-voltage switching. The zero switch voltage needs to be 
sensed for both switches T1, T4 in the arm and translate 
through sensing transformers to the zero input of the control 
circuit VS1, VS2. 
The output current is sensed by a special current 
transformer. The rectified voltage from the current 
transformer CS1 is fed into the non inverting input of the 
error amplifier as a feedback. 
The output voltage is sensed by a voltage transformer and 
the rectified voltage VS5 from transformer is fed into the 
comparator with hysteresis. If the output voltage vO is 
greater than the maximum value VOmax the switching 
frequency is adjusted on the maximum value, thus the 
minimum value of the output voltage is achieved. The 
control circuits ensure that the welding process starts with 
maximum frequency. 
Regulation is achieved by comparing actual voltage, which 
is proportional to the output current against reference 
voltage. Any changes of the output current due to load 
variations cause the pulse frequency change according to 
load and line conditions, stabilising the output current. The 
current transformer CS2 is used by sensing the current in the 

resonant tank  for overcurrent protection of the transistors. 
The high voltage MOS and IGBT gate drivers SKHI 20 are 
used to drive IGBTs. 

 
 

3. DESIGN OF THE CONVERTER 
 
The simplified model of the LCC-type series-parallel 
resonant converter used for analysis is shown in Fig. 3.  
For simplicity assume that a filter inductor LL (see Fig. 1.) 
ensures that output current IO is fully smoothed. It is also 
assumed that all components and devices of the converter 
are ideal. The load is presented by an equivalent resistance 
R1 [3].  
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Fig. 3. The equivalent circuit 
 
According to Fig. 3. the state-space model describing the 
dynamic behaviours of this converter is: 
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Fig. 2. Control circuit 
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The input voltage is a square wave whose rms value is: 
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and the resonant components LS and CS can be calculates as 
follows: 
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where the ZRS is a characteristic impedance: 
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whose value is found from[5]: 
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where the IRS is the resonant current at the short circuit : 
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The switching frequency fS at no-load and short circuit has 
to be higher than resonant frequency fR: 
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The fRS is the resonant frequency in the short circuit and the 
fRO is the resonance frequency at no-load. 
The magnitude of the voltage across the resonant capacitor 
CP is: 
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where QR is the quality factor and it is defined as: 
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At no-load when the output voltage is maximum  (in this 
application about 70V) the quality factor QR can be 
neglected. 
The normalised peak voltage across parallel capacitor CP and 
parallel output resistor R1 according equation (9) is illustrated 
in Fig. 4. for the capacitance ratio CP/CS=1 and 0,5. It is 
plotted as a function of the ratio fS/fRO at selected value of QR. 
From Fig. 4. we can find the value of parallel resonant 
capacitor CP. The Fig. 5. shows normalised peak voltage 
across series capacitor CS as function of fS/fRO at selected 
value of QR and CP/CS. 
Fig. 5. shows normalised resonant current IRM.ZO/VR. 2 
versus fS/fRS. It can be seen that high values of the IRM occur 
at the resonant frequency of the short circuit fRS. The 
resonant current increases with increasing output resistance 
R1 or decreasing QR.  
The choice of the parallel capacitor CP has to be a 
compromise between the significant various of the inverter 
frequency, the output voltage and high resonant current 
flowing at no load. 
The following parameters of resonant components were 
obtained: LS=42 H, CS=380nF, CP=380nF for short circuit 
resonance frequency 42kHz, minimum switching frequency 
65kHz and maximum switching frequency 100kHz. 
The operating conditions similar to those in the conventional 
electric arc welders are ensured by the proper design of the 
control circuits. By using a small value of the parallel 
capacitance CP the inverter resonant current increased to 
higher values than at the short circuits. This nuisance we can 
removed. The control algorithm recognises two states of the 
system according to the load current.  
The working state is recognised at iO > IOmin where IOmin is 
the minimum load current suitable for arc welding. No-load 
is recognised at iO < IOmin. At the working state the control 
algorithm adjusts the frequency according to difference 
between output current and reference signal. If the no-load 
is recognised the maximum frequency is set. 
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Fig. 4. Normalized maximum voltage 
across the parallel capacitor 
versus fS/fRO for different 
values of QR and CP/CS 

0

1

2

3

0,8 1 1,2 1,4 1,6 1,8

VCSM

2.VR

QR 0

=1

=3

fS/fRO

 
(a) 

0

1

2

3

0,8 1 1,2 1,4 1,6 1,8

VCSM

2.VR

QR 0

=1
=3

fS/fRO

 
(b) 

Fig. 5. Normalized maximum voltage 
acrooss the series capacitor 
versus fS/fRO for different 
values of QR and CP/CS 
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Fig. 6. Normalized maximum current 

through the resonant tank 
versus fS/fRS for different 
values of QR and CP/CS 

 
4. EXPERIMENTAL RESULTS 

 
The measurement was made at voltage V = 300V across 

the input filter CF1. The rated output current of 150A was 
reached at arc voltage. The output voltage at no-load circuit 
is from 40V to 70V. The value of the welding current is set 
by reference voltage fluently from 40A up to 150A. 
Waveforms of the voltage across resonant tank vR and 
resonant current iR are displayed in Fig. 7. Fig. 8. shows the 
switch voltage vCE and switch current iC. The converter 
operates above resonance frequency, hence the power 
switches are turned-on and turned-off under zero voltage 
switching (ZVS). We can see waveforms of the output 
current iO and voltage vO during full arc welding process in 
Fig. 9. At no-load the converter is driven to frequency 
100kHz and the voltage across the load is about 70V. At 
short circuit the minimum output current is about 80A at 
100kHz. The current of the arc is about 50A.  
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Fig. 7.  Resonant voltage across resonant tank vR and 
resonant current iR. t: 5 s/div, vR: 100V/div, iR: 
20A/div 
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Fig. 8. Switch voltage vCE and switch current iC. t: 
2.5 s/div, vCE: 50V/div, iC: 5A/div 

 

vo

io

 
 

Fig. 9.  Output voltage vo and output current io during 
welding. t: 100ms/div, vo: 50V/div, io: 20A/div 

 
 

5. CONCLUSION 
 
The dc-dc converter with series-parallel load resonant 
inverter is used as the arc welding supply. The LCC-type 
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load resonant tank was chosen due to its ability to operate at 
high frequency and together with control circuits limit 
voltage and current under open and short circuit conditions, 
respectively. A full design procedure for arc welding 
application has been developed and two control circuits for 
this converter are presented. The theoretical characteristics 
of the peak stresses are plotted in the normalised output 
plane.  
The dynamical and steady-state properties of the dc-dc 
converter working at switching frequency from 65kHz to 
100kHz with output current from 50A to 150A, output 
voltage at no-load voltage of  70V was presented. 
The presented dc-dc converter is suitable for arc welding 
source for its small weight and size, good efficiency and fast 
response. 
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