

W. PARRISH AN-956

ПРИМЕНЕНИЕ ПРИБОРОВ ДЛЯ ПОВЕРХНОСТНОГО МОНТАЖА

Аннотация

Технология поверхностного монтажа завоевывает возрастающий спрос по сравнению с монтажом через отверстия в плате. Компания International Rectifier предлагает силовые МОП ПТ, высоковольтные драйверы затворов, диоды Шоттки и диоды со сверхбыстрым восстановлением в корпусах, пригодных для поверхностного монтажа. Эта статья дает подробную информацию об этих корпусах и их тепловых характеристиках, а также об обращении с ними и их монтаже.

Введение

Электронная промышленность непрерывно ищет пути снижения размеров и стоимости своей продукции. Компоненты для поверхностного монтажа представляют собой важный шаг в этом направлении. Поверхностный монтаж означает пайку деталей на поверхности печатной платы вместо пропускания выводов приборов в отверстие печатной платы и пайки их с обратной стороны. Корпуса для компонентов, предназначенных для поверхностного монтажа, значительно меньше, чем для приборов, устанавливаемых в отверстия на плате, выводы их короче или загибаются под корпус. Результатом этого является гораздо более высокая плотность монтажа -на плате может быть установлено компонентов почти в четыре раза больше - и даже в большее число раз, если компоненты устанавливаются на обеих сторонах. Другие преимущества, извлекаемые из поверхностного монтажа, включают в

Рис.1. Транзисторный корпус D-PAK

себя меньшие паразитные емкости и индуктивности, более высокую надежность, меньше неисправностей, связанных со сборкой, меньшие производственные затраты и упрощение обращения с компонентами.

Сегодня наибольший прогресс в развитие компонентов для поверхностного монтажа сконцентрирован на интегральных схемах. Однако, одновременно с завоеванием технологией поверхностного монтажа быстрого внедрения во всех секторах электронной промышленности, существует растущий спрос на дискретные полупроводниковые приборы в корпусах для поверхностного монтажа. International Rectifier отреагировала на этот спрос, выпуская на своих производственных линиях семейство корпусов для поверхностного монтажа.

Корпуса для поверхностного монтажа

Таблица 1. Корпуса для поверхностного монтажа

Product	Package Type	
HEXFET Power MOSFET HEXFET Power MOSFET HEXFET Power MOSFET	TO-243AA (SOT-89 Trans.) TO-252AA (D-Pak) TO-220 with lead form	
Schottky Diode	TO-243AB (SOT-89 Diode)	
Diode	TO-243AB (SOT-89 Diode)	

Таблица 1 представляет перечень корпусов International Rectifier для поверхностного монтажа. Более подробно информацию о специфических МОП ПТ в корпусах для поверхностного монтажа можно найти в руководстве «HEXFET Designers Manual, HDM-1,Volume II» Предлагаемые контактные площадки печатных плат можно видеть на рис.2. Также выпускаются различные высоконадежные военные приборы. Для получения подробной информации обращаться в отдел высоконадежных военных приборов фирмы IR.

Тепловые данные

Как и у любых других полупроводниковых приборов, способность их пропускать ток определяется способностью корпуса рассеивать тепло. Пиковая температура перехода может быть вычислена так:

$$T = T_a + P_t(R\Theta_{JC} + R\Theta_{CS} + R\Theta_{SA}) = T_a + P_t \times R\Theta_{JA}$$

где

 T_i - температура перехода

T_a - температура окружающей среды

Р- полная рассеиваемая прибором мощность (потери проводимости, потери переключения, потери утечек и т.д.)

 $\mathsf{RO}_{\mathsf{JC}}$ - тепловое сопротивление переход-корпус

 $\mathsf{R}\Theta_\mathsf{CS}^{\circ}$ - тепловое сопротивление корпус -теплоотвод

 $\mathsf{R}\Theta_\mathsf{SA}$ - тепловое сопротивление теплоотвод-окружающая среда

RO_{JA} - тепловое сопротивление переход-окружающая среда

Таблица 2 показывает значения тепловых сопротивлений для корпусов, перечисленных в Таблице 1.

В случае приборов для поверхностного монтажа теплоотводом обычно является печатная плата или керамическая подложка, на которой паяется прибор. Тепловой импеданс теплоотвод-окружающая среда будет зависеть от материала платы или подложки, имеющейся площади контактных площадок для распространения тепла, близости других дополнительных тепловых нагрузок на плате и скорости воздушного потока (в случае принудительного охлаждения). Рис.З показывает, как тепловое сопротивление трехдюймовой квадратной печатной платы меняется в зависимости от площади площадок и скорости воздуха. Данные, приведенные на этом графике, должны использоваться с осторожностью, так как локальный поток воздуха может изменяться за счет теневого эффекта других компонентов и только тестирование образца может подтвердить адекватность конкретного теплового расчета.

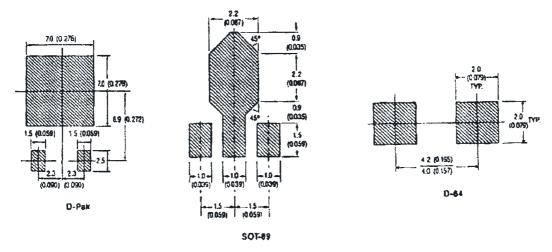


Рис.2 Предлагаемые размеры контактных площадок печатных плат

Теплоотводящая способность платы или подложки зависит от теплопроводности материала платы. Таблица 3 приводит теплопроводности различных, наиболее широко используемых, материалов. Снижение теплового сопротивления может быть достигнуто за счет свойств материала, толщины материала и эффективной площади платы, а также за счет скорости воздуха. Эти факторы могут взаимодействовать нелинейным образом.

Таблица 2. Тепловые сопротивления корпусов для поверхностного монтажа

Package	$R_{\theta JC}$ (max)	$R_{ heta CS}$ (typical)	$\mathbf{R}_{ heta\mathbf{S}\mathbf{A}}$	R _{θJA} (max)
TO-243AA (SOT-89 Trans.)	35	5	(Note 1)	110
TO-243AB (SOT-89 Diode)	35	5		110 (Note 2)
TO-252AA (D-Pak)	12.5 (Note 3)	3		100
TO-220AB	(Note 4)	1	_	80

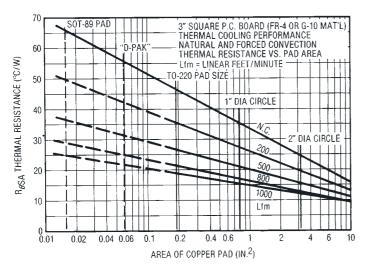
Примечание:

- 1. Зависит от материала и площади платы, см. текст
- 2. 5 для кристалла НЕХ-1, 3 для кристалла НЕХ-2,5-8 для диодов.
- 3. Между 1 и 3.5 в зависимости от размера кристалла
- 4. Величины тепловых сопротивлений даны в °К/Вт

Таблица 3. Теплопроводности наиболее распространенных материалов печатных плат и керамических подложек

Material	Thermal Conductivity (Watt-in./in.²-°C)	% Increase Over FR-4/G-10
Glass Epoxy: FR-4/G-10 Alumina Ceramic Aluminum Nitride Beryllia Ceramic*	0.0072 0.45 3.3 5.2	62.5% 458% 722%

Внимание:


Пыль при расширении или разламывании бериллия высокотоксична при вдыхании

Обращение с корпусами

Приборы в корпусах SOT-89, D-Pak и D-64 пригодны для автоматической сборки при использовании ленты и катушки. Ленты могут быть с приборами, имеющими различную ориентацию, что влияет на качество катушек. Катушки для SOT-89 содержат 1000 приборов, независимо от ориентации приборов. Катушки D-Pak содержат или 2000, или 3000 штук в зависимости от ориентации приборов. Катушки D-64 содержат 1800 штук каждая.

Приборы содержатся карманах в ленты, покрытой липкой полиэфирной пленкой. Сила, требуемая для отделения пленки от ленты, возрастает с возрастанием времени хранения, как показано на рис.4.

Большую информацию о ленте и катушках можно взять из отдельных справочных данных в HDM-1,Vol.II или прямо на заводе.

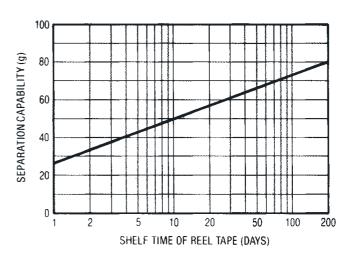


Рис.3. Тепловое сопротивление 3-дюймовой квадратной печатной платы

Рис. 4. Усилие разделения в зависимости от времени хранения катушки с лентой

Обращение с МОП ПТ

Нижеследующие меры следует предпринимать, чтобы избежать выхода МОП ПТ из строя из-за электростатического разряда (ЭСР):

- Всегда храните и перемещайте МОП ПТ в закрытых токопроводящих контейнерах.
- Вынимайте МОП ПТ из контейнеров только после того, как оператор и контейнер заземлены на рабочем месте с защитой от ЭСР.
- Персонал, работающий с МОП ПТ, должен носить спецодежду, рассеивающую статическое электричество, и быть заземленным все время.
- Полы должны иметь заземленное, рассеивающее статический заряд покрытие или быть обработаны компаундом, обеспечивающим рассеивание электростатического заряда.
- Столы должны иметь покрытие, рассеивающее статический заряд.
- Избегайте при работе с МОП ПТ изолирующих материалов любого рода, так как эти материалы могут накапливать статический заряд, который при разрядке на МОП ПТ может его уничтожить.
- Для установки или удаления МОП ПТ всегда пользуйтесь только заземленным паяльником.
- Тестируйте МОП ПТ только на рабочих местах с защитой от ЭСР.
- Используйте все меры защиты одновременно и при участии обученного персонала.

Более подробную информацию по защите от ЭСР можно найти в статье AN-955.

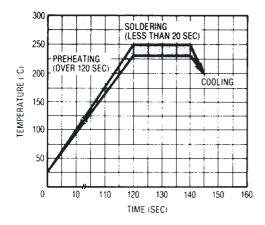
Установка компонентов и пайка

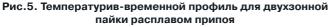
Все типы корпусов имеют предварительно облуженные выводы для выполнения пайки. После установки на плату прибор удерживается на месте с помощью предварительно нанесенного материала, обладающего адгезией или паяльной пастой. Обычно используются следующие методы пайки:

- Пайка волной.
- Расплавление припоя из газовой фазы.
- Инфракрасное расплавление припоя..
- Паяющий инструмент с импульсным нагревом.
- Ручная пайка.

Во всех случаях важна хорошая подготовка платы, чтобы получить качественное паянное соединение, необходимое для хорошего теплового и электрического контакта. Окисел должен удаляться методом, соответствующим имевшему место окислению: трихлорэтан для легкого окисления, флюс органической кислоты для среднего окисления и ферро-хлоридный раствор для сильного окисления.

Пайка волной


Это простейший способ, пайка волной требует выполнения следующих технологических операций:


- Аккуратное нанесение материала с адгезией на месте установки приборов.
- Аккуратная установка приборов на площадки для пайки при помощи адгезии (обычно выполняется установочным роботом).
- Предварительный нагрев, пенный флюс и пайка волной.
- Охлаждение и удаление флюса.

Пайка расплавом припоя в среде пара

Этот процесс использует паяльную пасту для нанесения флюса и припоя на площадку для пайки. Паста также работает как фиксатор и удерживает прибор на месте в процессе расплава.

Обычно паста состоит из 70 % припоя и 30 % связующего (клейкого) вещества. Паста обычно представляет собой частицы сплава 60-40 Pb-Sn размером 300 мкм, (иногда 62-36-2 Pb-Sn-Ag) Связующее вещество содержит смесь активатора (флюс), растворителя и смазки-отвердителя. Паста наносится на площадки методом шелкографии толщиной 8-10 мкм.

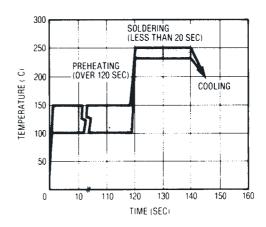


Рис.6. Температурно временной профиль для пайки в паяльной ванне с предварительным нагревом

Затем прибор устанавливается на подготовленную площадку. Важна точная установка, хотя некоторое совмещение прибора с площадкой происходит в результате расплава припоя благодаря поверхностному натяжению припоя.

Паяльная паста расплавляется пропусканием плат через горячий пар. Припой расплавляется по мере того, как пар конденсируется на плату и компоненты. Популярны два метода расплава в среде пара. Они включают в себя (1) метод конвейера, в котором платы перемещаются на конвейере над кипящей жидкостью и (2) двойная паровая система, в которой платы перемещаются вертикально, через зоны пара с различными температурами.

Пайка осуществляется в печах при температуре 230-250°С, предпочтительное время менее 20 сек. Время предварительного нагрева должно быть 120 секунд или больше. Независимо от того, какие используются методы нагрева, объект должен достигать требуемого профиля время-температура. Рис.6 показывает температурный профиль, требуемый для пайки в паяльной ванне с предварительным нагревом.

Инфракрасный расплав припоя

Подготовительные операции до нагрева платы такие же, как в методе расплава припоя паровой средой. В инфракрасном процессе плата проходит над инфракрасными излучателями, чтобы достигнуть расплавления припоя. Нужно быть осторожным, чтобы не перегреть какие-либо «черные тела», которые могут быть установлены на плате.

Расплав припоя импульсным нагревом

Этот метод требует специального прфиля нагрева профиля, который направляет поток нагретого газа вокруг прибора поверхностного монтажа и на выводы и площадки печатной платы. Циклы нагрева, расплава припоя и охлаждения должны быть подобны циклам, показанным на рис.5

Ручная пайка,

Ручной пайки следует, по возможности, избегать, так как компонент легко может быть смещен и поврежден во время операции ручной пайки. Однако, если необходим ремонт платы, нужно следовать следующим рекомендациям:

- 1. Температура жала паяльника не должна превышать 250°C.
- 2. Расплав припоя должен завершаться в течение трех секунд. Жало паяльника не должно быть больше 1мм в диаметре.